Glacier Calving in Svalbard with fdmr
Tian Li, Amin Shn, Ruitang Yang, Wenxue Cao
Source:vignettes/calving_tutorial.Rmd
calving_tutorial.Rmd
Introduction
This tutorial will guide you through the process of performing a simple linear regression using the inlabru and fdmr packages in R.
The Data
- For this tutorial, we will use a dataset including envrionmental variables measured in Svalbard. Specifically we want to check the controlling climatic parameters for calving front variability (length change) of tidewater glaciers in Svalbard.
- We use six tidewater glaciers to demonstrate this
- Variables include surface runoff, surface mass balance, surface meltwater production, air temperature, sea surface temperature, subsurface ocean temperature
The location of the tidewater glaciers are shown below.
# Firstly retrieve the data
calving_data <- read.csv("4DM_Calving_NEW.csv")
# visualize the glacier location
glacierNames <- unique(calving_data[c("glacierName")])
lats <- unique(calving_data[c("latitude")])
lons <- unique(calving_data[c("longitude")])
glac1 <- list(longitude = lons[0, ], latitude = lats[0, ], label = glacierNames[0, ])
glac2 <- list(longitude = lons[1, ], latitude = lats[1, ], label = glacierNames[1, ])
glac3 <- list(longitude = lons[2, ], latitude = lats[2, ], label = glacierNames[2, ])
glac4 <- list(longitude = lons[3, ], latitude = lats[3, ], label = glacierNames[3, ])
glac5 <- list(longitude = lons[4, ], latitude = lats[4, ], label = glacierNames[4, ])
glac6 <- list(longitude = lons[5, ], latitude = lats[5, ], label = glacierNames[5, ])
points <- list(glac1, glac2, glac3, glac4, glac5, glac6)
markers <- dplyr::bind_rows(points)
fdmr::retrieve_tutorial_data(dataset = "hydro")
##
## Tutorial data extracted to /home/runner/fdmr/tutorial_data/hydro
norway_polygon_path <- fdmr::get_tutorial_datapath(dataset = "hydro", filename = "Kvilldal_Catch_Boundary.geojson")
norway_polygon <- sf::read_sf(norway_polygon_path) %>% sf::st_zm()
sfc <- sf::st_transform(norway_polygon, crs = "+proj=longlat +datum=WGS84")
fdmr::plot_map(polygon_data = sfc, markers = markers, polygon_fill_opacity = 0.5)
Simple Linear Regression Model
We will model Calving’s front change using three important factors namely: surface runoff (mmWE/day), 3m air temperature (°C), sea surface temperature (°C).