Skip to contents

Introduction

This is a tutorial to apply R-INLA to modeling geophysical data. The data represent time-series at some locations distributed over a line or over an area. There are two possible case studies one is seismic data with seismic stations located along a line. Each station record 4 components of acoustic signal X-Y-Z particle displacement on geophone and presure component on hydrophone sensor. The second case is magnteotelluric data with stations distrubuted over some area. The signal has 4 channels: 2 magnetic and 2 electric field channels. In the dataset only 2-3 stations measure at the same. The spatiotemporal evolution of the field is governed by Maxwell equations. The source of EM field is disturbance of ionosphere due to solar activity, electrical structure of the crust and noise component (cultural EM noise, wind, rain, local conductors). The goal is to describe the source signal components in space in time.
The spatiotemporal evolution of the field is governed by wave equation. The small-scale heterogenetities in earth crust produce multiply scattered wavefield, getting more expressed at a later times and called coda wave. The goal is to learn about correlations between signals at diffent stations and from this predict distribution of heterogeneities.

Pre-processing and Import data

Geophysical data can come in lots of different formats but here will will start with a csv.

# Set the path to the CSV file
data_path <- "data/MT_Svalbard_Z.csv"

# Read the CSV file into a data frame
d <- read.csv(data_path)

# Display the first 30 rows of the data frame
print(head(d, 30))
##      T Code      Lat      Lon        X       Y                 Zxx      DZxx
## 1   64  W01 79.43912 13.37190 344352.8 8829185  0.521560-1.268700i 0.0548630
## 2  128  W01 79.43912 13.37190 344352.8 8829185  0.976730-0.946150i 0.0796320
## 3  256  W01 79.43912 13.37190 344352.8 8829185  1.275000-0.545610i 0.1055400
## 4   64  W02 79.47170 13.40340 345465.2 8832708  0.365810+0.027603i 0.0122050
## 5  128  W02 79.47170 13.40340 345465.2 8832708  0.334400+0.130250i 0.0196360
## 6  256  W02 79.47170 13.40340 345465.2 8832708  0.332980+0.071971i 0.0160230
## 7   64  W03 79.35887 14.09174 357911.5 8818457  0.677670+0.533030i 0.0144900
## 8  128  W03 79.35887 14.09174 357911.5 8818457  0.602800+0.524250i 0.0228960
## 9  256  W03 79.35887 14.09174 357911.5 8818457  0.464750+0.406160i 0.0299950
## 10  64  W04 79.39286 14.00560 356602.2 8822436 -0.445390-1.294600i 0.0127040
## 11 128  W04 79.39286 14.00560 356602.2 8822436 -0.125970-0.991520i 0.0168970
## 12 256  W04 79.39286 14.00560 356602.2 8822436  0.139670-0.520940i 0.0215470
## 13  64  W05 79.37269 13.86486 353455.6 8820550  0.800700+0.635460i 0.0185630
## 14 128  W05 79.37269 13.86486 353455.6 8820550  0.906690+0.787220i 0.0254650
## 15 256  W05 79.37269 13.86486 353455.6 8820550  0.545780+0.611090i 0.0226350
## 16  64  W06 79.33750 13.89353 353563.7 8816578  0.854390+0.744660i 0.0398780
## 17 128  W06 79.33750 13.89353 353563.7 8816578  1.051600+1.123800i 0.0540530
## 18 256  W06 79.33750 13.89353 353563.7 8816578  0.490920+0.838550i 0.0422330
## 19  64  W07 79.42052 13.73600 351485.9 8826175  0.819140+0.805510i 0.0236290
## 20 128  W07 79.42052 13.73600 351485.9 8826175  0.781280+0.686710i 0.0304260
## 21 256  W07 79.42052 13.73600 351485.9 8826175  0.518830+0.592560i 0.0303840
## 22  64  W08 79.43124 13.69948 350892.6 8827457  0.398310-0.140200i 0.0170600
## 23 128  W08 79.43124 13.69948 350892.6 8827457  0.444280-0.099360i 0.0226260
## 24 256  W08 79.43124 13.69948 350892.6 8827457  0.422420+0.159650i 0.0281020
## 25  64  W09 79.49686 13.91783 356219.0 8834178 -0.123040-0.528410i 0.0053600
## 26 128  W09 79.49686 13.91783 356219.0 8834178 -0.011371-0.377170i 0.0055408
## 27 256  W09 79.49686 13.91783 356219.0 8834178  0.040909-0.166560i 0.0060876
## 28  64  W10 79.47246 13.94497 356438.3 8831406  0.197440-0.745730i 0.0143570
## 29 128  W10 79.47246 13.94497 356438.3 8831406  0.401900-0.455960i 0.0215480
## 30 256  W10 79.47246 13.94497 356438.3 8831406  0.500630+0.068497i 0.0273140
# Create a scatter plot
plot(d$X, d$Y, pch = 20, main = "Svalbard MT sites", xlab = "X", ylab = "Y")

Here we create the locations of the data for the mesh creation. This is the locations of the data, not the locations of the mesh nodes.

locations <- d[, c("Lon", "Lat")]
locations <- unique(locations)
names(locations) <- c("LONG", "LAT")

Here we use the locations to help specify the best fit mesh to our data.

Meshing

mesh <- fmesher::fm_mesh_2d(
  loc.domain = locations,
  max.edge = 0.05,
  cutoff = 1e-3,
  offset = 0.1
)
plot(mesh)
points(locations, col = "red")

fdmr::plot_mesh(mesh)
## Warning in fdmr::plot_mesh(mesh): Cannot read CRS from mesh, assuming WGS84
## Warning in fdmr::antimeridian_wrapping(spatial_mesh_original, crs =
## expected_crs, : Polygon coordinates [0;360] have been converted to [-180;180]

Stochastic modeling with INLA

Now we can create a model that is solved on the mesh.

library(INLA)
## Loading required package: Matrix
## Loading required package: sp
## This is INLA_24.06.27 built 2024-06-27 02:36:04 UTC.
##  - See www.r-inla.org/contact-us for how to get help.
##  - List available models/likelihoods/etc with inla.list.models()
##  - Use inla.doc(<NAME>) to access documentation
# Synthetic data generation
set.seed(123) # For reproducibility
n <- 100 # Number of time points
stations <- 12 # Number of stations

# Generate time index
time_index <- 1:n

# Generate spatial index (station IDs)
space_index <- rep(1:stations, each = n)

# Simulate some harmonic signals with noise for three stations
harmonic_data <- data.frame(
  station = factor(space_index),
  time = rep(time_index, stations),
  observation = sin(rep(time_index, stations) * 2 * pi / 50) +
    rnorm(n * stations, sd = 0.5) +
    rep(rnorm(stations, sd = 3), each = n) # Station-specific offset
)

# Define the model with harmonic terms for time and spatial correlation
formula <- observation ~ f(station, model = "iid") +
  f(time, model = "rw1", cyclic = TRUE)

# Fit the model using INLA
result <- inla(formula, family = "gaussian", data = harmonic_data)

# Display the summary of the results
summary(result)
## Time used:
##     Pre = 0.416, Running = 0.248, Post = 0.124, Total = 0.788 
## Fixed effects:
##              mean    sd 0.025quant 0.5quant 0.975quant  mode kld
## (Intercept) 0.359 0.654     -0.946    0.359      1.663 0.359   0
## 
## Random effects:
##   Name     Model
##     station IID model
##    time RW1 model
## 
## Model hyperparameters:
##                                           mean    sd 0.025quant 0.5quant
## Precision for the Gaussian observations  4.098 0.172      3.768    4.094
## Precision for station                    0.223 0.090      0.092    0.208
## Precision for time                      38.693 8.239     24.872   37.887
##                                         0.975quant   mode
## Precision for the Gaussian observations      4.445  4.089
## Precision for station                        0.439  0.181
## Precision for time                          57.155 36.383
## 
## Marginal log-Likelihood:  -986.97 
##  is computed 
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
# Visualize the fitted values
plot(harmonic_data$time, harmonic_data$observation, col = harmonic_data$station, pch = 19, cex = 0.5, xlab = "Time", ylab = "Observation", main = "MT signals at 12 stations")
points(harmonic_data$time, result$summary.fitted.values$mean, pch = 4, cex = 0.7, col = "blue")
legend("topright", legend = c("Observations", "Fitted"), col = c("black", "blue"), pch = c(19, 4))

# Extract the hyperparameters of the spatial field
spatial_hyperparams <- result$summary.hyperpar

# Print the hyperparameters
print(spatial_hyperparams)
##                                               mean         sd  0.025quant
## Precision for the Gaussian observations  4.0976058 0.17197443  3.76842131
## Precision for station                    0.2231376 0.08977233  0.09222305
## Precision for time                      38.6925363 8.23945401 24.87174045
##                                           0.5quant 0.975quant       mode
## Precision for the Gaussian observations  4.0943632  4.4454161  4.0886696
## Precision for station                    0.2082802  0.4394718  0.1808414
## Precision for time                      37.8869702 57.1549238 36.3830968

Observed time series will be added soon